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Planefortoday

• Linearized Einstein equations

•

Light deflection

• Gravitational waves

• Laws of Black Hole Mechanics ( cont .
 of  previous lecture)
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Linearized Einstein Equations
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Linearized Einstein Equations
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Newtonians
Consider static sources
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Lecture 14

Production of gravitational waves
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Planefortoday

• Radiation gravitational field

• Detection of

gravitationalwaves•

Energy loss due to gravitational radiation

• Laws of Black Hole Mechanics ( cont .
 of lecture 12 )
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First Observation of Gravitational Waves ( 14/09/2015 )
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LIGO detectors

Hanford Livingstone



EnergyYetgravitationalradiation
How to  associate an energy flux to gravitational waves ?
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of the source. Moreover, at λ= 1.3 mm, Sgr A* has a compact
flux density that is approximately four times larger than that of
M87*, with no appreciable contribution to the short-baseline
visibilities from an extended jet. However, producing an image
of Sgr A* requires additional assumptions because of the rapid
source variability and interstellar scattering.

Specifically, VLBI imaging typically relies on Earth-rotation
aperture synthesis, in which the projection of each baseline
sweeps out an arc in the (u, v)-plane as the Earth rotates,
allowing a sparse array of telescopes to obtain the (u, v)-
coverage necessary for the imaging of a static source
(Thompson et al. 2017). To account for the source structural
variability, we used a parametric model discussed in Section 4.
By incorporating this variability error budget, imaging and
modeling methods designed for a static source can be applied
to analyze data from a variable source.

To account for the interstellar scattering, we used two
approaches (Paper III). The first, “on-sky imaging,” applies no
modifications to the data or images. In this approach, the
algorithms simply reconstruct the scattered image of the source.
The second, “descattered imaging,” adds an error budget to
interferometric visibilities to account for stochastic scattering
substructure before deconvolving the ensemble-average scat-
tering kernel. Both the ensemble-average kernel and the power
spectrum of scattering are used (Psaltis et al. 2018), each of
which is precisely known from an analysis combining decades
of observations of Sgr A* at centimeter wavelengths (Johnson
et al. 2018).

To test these imaging techniques and to select appropriate
imaging parameters, we developed a suite of synthetic
observations of seven geometric models that share the
scattering and variability properties of Sgr A*. This suite
included models with widely varying morphologies: rings,
disks, a crescent, a double source, and a point-like source with
an extended halo. Each model was selected to produce
visibility amplitudes that were similar to those of Sgr A*, with
two deep visibility minima, a physical scattering model
applied, and stochastic temporal evolution generated by a
statistical model (Lee & Gammie 2021).

We then selected the sets of imaging parameters that
accurately reconstruct images across the entire test suite,
including both ring and nonring data sets. These “top set”
parameter choices yield a corresponding collection of recon-
structed images of Sgr A* that provide both a representative
average image and a measure of its uncertainty. In addition, we
used a new Bayesian imaging method, which simultaneously
estimates both the reconstructed image and its associated
variability noise model (Broderick et al. 2020). This method
does not require training on synthetic data, although we used
the same test suite for comparison and validation of this
method.

When applied to the Sgr A* data, over 95% of the top set
images have a prominent ring morphology. For an analysis
using the combination of April 6 and 7 data, all samples from
the Bayesian imaging posterior show a ring morphology. In
addition, geometric modeling of the EHT data shows a
consistent statistical preference for ring morphologies over
alternatives with comparable complexity. The ring has a
diameter, width, and central brightness depression that are
consistent across the different choices of imaging methods and
parameters (see Paper III). However, the reconstructed images
show diversity in their specific attributes, particularly the

azimuthal intensity distribution around the ring. This uncer-
tainty is a consequence of the limited EHT baseline coverage,
compounded by the challenges of imaging a variable source.
We categorized the reconstructed images into four clusters
spanning the primary reconstructed structures: three clusters are
ring modes with varying position angle, while the fourth is a
comparatively small set of reconstructed images with diverse
nonring morphologies. Figure 3 shows a representative average
image of Sgr A* on April 7, as well as the average image for
each of these clusters along with their relative occurrence
frequency.
To quantify the ring parameters in a complementary way, we

used several geometrical modeling methods, the parameteriza-
tions of which were guided by the reconstructed images of
Sgr A*. These models are defined by a thick ring with
azimuthal variations determined by low-order Fourier coeffi-
cients and an additional Gaussian brightness floor. Because
these simple geometric models have a small number of
parameters, they can be constrained using instantaneous

Figure 3. Representative EHT image of Sgr A* from observations on 2017
April 7. This image is an average over different reconstruction methodologies
(CLEAN, RML, and Bayesian) and reconstructed morphologies. Color denotes
the specific intensity, shown in units of brightness temperature. The inset circle
shows the restoring beam used for CLEAN image reconstructions (20 μas
FWHM). The bottom panels show average images within subsets with similar
morphologies, with their prevalence indicated by the inset bars. The
multiplicity of image modes reflects uncertainty due to the sparse baseline
coverage; it does not correspond to different snapshots of the variable source.
Nearly all reconstructed images show a prominent ring morphology. While the
diameter and thickness of the ring are generally consistent across the
reconstructions, the azimuthal structure of the ring is poorly constrained.

6

The Astrophysical Journal Letters, 930:L12 (21pp), 2022 May 10 Event Horizon Telescope Collaboration et al.
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Blacktloles
( bonus material )



Do black holes actually form through gravitational collapse ?

Probably yes
because :
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KinkingHorizons

Every event horizon in a stationary , asymptotically flat spacetime is
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Laws of Black Hole Mechanics
-

Oth law : the surface gravity is constant over the horizon
.
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Holography. . .


